Odium Revelio! Detecting Subtle Hate Speech in Online Conversations

Sakshi Agarwal⁺ (sakshia1@uci.edu), Sandya Mannarswamy* (sandyasm@gmail.com)

⁺ University of California, Irvine, * Independent Researcher

Introduction

Misuse of social media has the power to induce trigger hatred, abuse and toxicity.

Example – **Comment text** : Ever heard of the republican icon XYZ? **Reference** : XYZ accused of sending sexual emails to young boys.

What is Inter-attention?

Attention weights of an input text encodings are learnt from an encoded representation of a related text.

Methodology

- Encode comment text (T), background information into neural sentence embedding Y_C, Y_B respectively.
- Capture the cross-text

Results

 Two baseline classifier -SVM Gradient boosting Bag of words model Lexicon : hatebase.org

Do the automated approaches detect the subtle expression of hate speech?

No! While neural network models have been proposed for hate speech classification, they have not modeled this problem.

Objectives

- Model background knowledge.
- Enrich an existing dataset with additional background information.
- Develop a neural network based approach and evaluate on dataset.

Equations for generating the crosstext interactions :

(i) $M_1 = tanh(W_1Y_c + W_2Y_B)$ (ii) $\alpha = softmax(W^TM_1)$ (1) $O_1 = \alpha Y_c$

Experiment

Setup

interaction (O₁) between Y_C and Y_B.

Cross-entropy loss

Length of summary – 150.

• Feed O1 to a standard Multilayer Perceptron (MLP) classifier. Comparisons between intra-

attention and inter-attention.								
Metho	d A	ccuracy	Precision	Recall	F-Sco			

SVM	0.68	0.61	0.68	0.60
Gradient- Boost	0.70	0.67	0.70	0.59
No external	0.75	0.65	0.42	0.51
Intra- attention	0.81	0.73	0.63	0.68
Inter- attention	0.85	0.84	0.85	0.84

Future Work

- Handle "sound alike" hateful comments like "just like Milk, this ship will be full of sea-men".
- Incorporate image content on posts as additional information.

Dataset?

Fox News User Comments corpus¹

•	1528	٠	678	•	10 News
	comments		unique		articles
•	435 hateful		users		
	comments				

Background information?

- Wikipedia , UrbanDictionary (manual or query matching)
- Article Summary, Previous comments

Functional Components of our Approach

- TensorFlow
 Pre-trained word embedding
- Adam Optimizer Length of article title 60
- Length of T =
 Length of external information 150
 184.
- Softmax layer followed by fully connected MLP classifier.

Acknowledgements

I thank Conduent Labs, Bangalore for giving me the opportunity to work on this project. I am very thankful to my mentor, Sandya who guided me throughout this research.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473.

Burnap, P., and Williams, M. L. 2015. Cyber hate speech on twitter : An application of machine classification and statistical modeling for policy and decision making Gao, L., and Huang, R. 2017. Detecting online hate speech using context aware models. CoRR abs/1710.07395 Davidson, T.; Warmsley, D.; Macy, M. W.; and Weber, I. 2017. Automated hate speech detection and the problem of offensive language. CoRR abs/1703.04009